Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Hla ; 101(4):373, 2023.
Article in English | EMBASE | ID: covidwho-2298631

ABSTRACT

Since the beginning of the SARS-Cov-2 pandemic, in 2020, numerous data with respect to the influence of immunogenetics to the predisposition and infection severity have been reported worldwide. It is well accepted that immunogenetics plays a pivotal role in infection and vaccination, as well as vaccination failures and/or breakthrough. Factors of the major histocompatibility complex and the common ABO blood group system have been so far discussed. Here, we describe the association of HLA-A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, -DPB1, and HLA-E, -F, -G, -H on the results of molecular detection of COVID-19 or in some cases on antibody detection upon first testing. Furthermore, we defined molecularly 22 blood group systems comprising 26 genes and 5 platelet antigen genes. We observed 37% COVID-19 PCR negative individuals and 63% positive. Within the negative subjects HLA-B*57:01, HLA-B*55:01, DRB1*13:01, DRB1*01:01, were enriched, and in the positive group homozygosity for DQA1/DQB1, DRB1*09:01 and DRB1*15:01. For HLA-DQA1 we observe an enrichment for DQA1*01:01, DQA1*02:01 and DQA1*01:03. For HLADQB1 we found HLA-DQB1*06:02 was enriched in the positive group while HLA-DQB1*05:01 and HLA-DQB1*06:03 in the negative group. We observed a significant enrichment of homozygosity for DQA1/DQB1 in the positive group. The homozygous platelet antigen HPA-1a was significantly enriched in the negative group, contrasting the result of HPA-1ab that was enriched in the COVID-19 infected group. Despite limitations of our study, the data presented here show clearly that COVID-19 infection and all the consequences of that are multifactorial and multigenetic. The virus is in a continuous mutation/selection process leading to escape possibilities. Therefore, associations are a momentum in science.

2.
Arch Immunol Ther Exp (Warsz) ; 71(1): 9, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2303763

ABSTRACT

The interest in NK cells and their cytotoxic activity against tumour, infected or transformed cells continuously increases as they become a new efficient and off-the-shelf agents in immunotherapies. Their actions are balanced by a wide set of activating and inhibitory receptors, recognizing their complementary ligands on target cells. One of the most studied receptors is the activating CD94/NKG2C molecule, which is a member of the C-type lectin-like family. This review is intended to summarise latest research findings on the clinical relevance of NKG2C receptor and to examine its contribution to current and potential therapeutic strategies. It outlines functional characteristics and molecular features of CD94/NKG2C, its interactions with HLA-E molecule and presented antigens, pointing out a key role of this receptor in immunosurveillance, especially in the human cytomegalovirus infection. Additionally, the authors attempt to shed some light on receptor's unique interaction with its ligand which is shared with another receptor (CD94/NKG2A) with rather opposite properties.


Subject(s)
Histocompatibility Antigens Class I , NK Cell Lectin-Like Receptor Subfamily C , Humans , Killer Cells, Natural , Ligands
3.
Hum Immunol ; 84(8): 384-392, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2251762

ABSTRACT

Human Leukocyte Antigens (HLA) are classified in three different classes I, II and III, and represent the key mediators of immune responses, self-tolerance development and pathogen recognition. Among them, non-classical subtypes (HLA-Ib), e.g. HLA-E and HLA-G, are characterize by tolerogenic functions that are often exploited by viruses to evade the host immune responses. In this perspective, we will review the main current data referred to HLA-G and HLA-E and viral infections, as well as the impact on immune response. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane library) for a systematic search until November 2022 using MeSH keywords/terms (i.e. HLA, HLA-G, HLA-E, viral infection, SARS-CoV-2, etc.…). Recent studies support the involvement of non-classical molecules, such as HLA-E and HLA-G, in the control of viral infection. On one side, viruses exploit HLA-G and HLA-E molecule to control host immune activation. On the other side, the expression of these molecules might control the inflammatory condition generated by viral infections. Hence, this review has the aim to summarize the state of art of literature about the modulation of these non-classical HLA-I molecules, to provide a general overview of the new strategies of viral immune system regulation to counteract immune defenses.


Subject(s)
COVID-19 , Virus Diseases , Humans , HLA-G Antigens , SARS-CoV-2 , Histocompatibility Antigens Class I , HLA Antigens/genetics
4.
Hum Immunol ; 84(4): 263-271, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2231052

ABSTRACT

BACKGROUND: HLA-E interaction with inhibitory receptor, NKG2A attenuates NK-mediated cytotoxicity. NKG2A overexpression by SARS-CoV-2 exhausts NK cells function, whereas virus-induced down-regulation of MHC-Ia reduces its derived-leader sequence peptide levels required for proper binding of HLA-E to NKG2A. This leads HLA-E to become more complex with viral antigens and delivers them to CD8+ T cells, which facilitates cytolysis of infected cells. Now, the fact that alleles of HLA-E have different levels of expression and affinity for MHC Ia-derived peptide raises the question of whether HLA-E polymorphisms affect susceptibility to COVID-19 or its severity. METHODS: 104 COVID-19 convalescent plasma donors with/without history of hospitalization and 18 blood donors with asymptomatic COVID-19, all were positive for anti-SARS-CoV-2 IgG antibody as well as a group of healthy control including 68 blood donors with negative antibody were subjected to HLA-E genotyping. As a privilege, individuals hadn't been vaccinated against COVID-19 and therefore naturally exposed to the SARS-CoV-2. RESULTS: The absence of HLA-E*01:03 allele significantly decreases the odds of susceptibility to SARS-CoV-2 infection [p = 0.044; OR (95 %CI) = 0.530 (0.286 - 0.983)], suggesting that HLA-E*01:01 + HLA-E*01:01 genotype favors more protection against SARS-CoV-2 infection. HLA-E*01:03 + HLA-E*01:03 genotype was also significantly associated with more severe COVID-19 [p = 0.020; 2.606 (1.163 - 5.844) CONCLUSION: Here, our observation about lower susceptibility of HLA-E*01:01 + HLA-E*01:01 genotype to COVID-19 could be clinical evidence in support of some previous studies suggesting that the lower affinity of HLA-E*01:01 to peptides derived from the leader sequence of MHC class Ia may instead shift its binding to virus-derived peptides, which then facilitates target recognition by restricted conventional CD8+ T cells and leads to efficient cytolysis. On the other hand, according to other studies, less reactivity of HLA-E*01:01 with NKG2A abrogates NK cells or T cells inhibition, which may also lead to a greater cytotoxicity against SARS-CoV-2 infected cells compared to HLA-E*01:03. Taken together given HLA-E polymorphisms, the data presented here may be useful in identifying more vulnerable individuals to COVID-19 for better care and management. Especially since along with other risk factors in patients, having HLA-E*01:03 + HLA-E*01:03 genotype may also be associated with the possibility of severe cases of the disease.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , CD8-Positive T-Lymphocytes , SARS-CoV-2 , COVID-19 Serotherapy , Histocompatibility Antigens Class I , Peptides , Genotype
5.
J Med Virol ; 95(1): e28404, 2023 01.
Article in English | MEDLINE | ID: covidwho-2157853

ABSTRACT

The severity of COVID-19 is associated with individual genetic host factors. Among these, genetic polymorphisms affecting natural killer (NK) cell responses, as variations in the HLA-E- (HLA-E*0101/0103), FcγRIIIa- (FcγRIIIa-158-F/V), and NKG2C- (KLRC2wt/del ) receptor, were associated with severe COVID-19. Recently, the rs9916629-C/T genetic polymorphism was identified that indirectly shape the human NK cell repertoire towards highly pro-inflammatory CD56bright NK cells. We investigated whether the rs9916629-C/T variants alone and in comparison to the other risk factors are associated with a fatal course of COVID-19. We included 1042 hospitalized surviving and 159 nonsurviving COVID-19 patients as well as 1000 healthy controls. rs9916629-C/T variants were genotyped by TaqMan assays and were compared between the groups. The patients' age, comorbidities, HLA-E*0101/0103, FcγRIIIa-158-F/V, and KLRC2wt/del variants were also determined. The presence of the rs9916629-C allele was a risk factor for severe and fatal COVID-19 (p < 0.0001), independent of the patients' age or comorbidities. Fatal COVID-19 was more frequent in younger patients (<69.85 years) carrying the FcγRIIIa-158-V/V (p < 0.006) and in older patients expressing the KLRC2del variant (p < 0.003). Thus, patients with the rs9916629-C allele have a significantly increased risk for fatal COVID-19 and identification of the genetic variants may be used as prognostic marker for hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Killer Cells, Natural , Polymorphism, Genetic , Aged , Humans , Alleles , COVID-19/genetics , NK Cell Lectin-Like Receptor Subfamily C/genetics , Risk Factors
6.
Front Immunol ; 13: 960852, 2022.
Article in English | MEDLINE | ID: covidwho-2032776

ABSTRACT

In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.


Subject(s)
Immunity , NK Cell Lectin-Like Receptor Subfamily C , CD8-Positive T-Lymphocytes , HLA Antigens , Histocompatibility Antigens Class I , Humans , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily C/immunology
7.
Cell Rep ; 38(10): 110503, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1705992

ABSTRACT

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Subject(s)
COVID-19 , Histocompatibility Antigens Class I , Killer Cells, Natural , Methyltransferases , NK Cell Lectin-Like Receptor Subfamily C , RNA Helicases , SARS-CoV-2 , Viral Nonstructural Proteins , COVID-19/immunology , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/immunology , Methyltransferases/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Peptides/metabolism , RNA Helicases/immunology , Viral Nonstructural Proteins/immunology
8.
Rev Med Virol ; 31(6): e2236, 2021 11.
Article in English | MEDLINE | ID: covidwho-1573896

ABSTRACT

Modifications in HLA-I expression are found in many viral diseases. They represent one of the immune evasion strategies most widely used by viruses to block antigen presentation and NK cell response, and SARS-CoV-2 is no exception. These alterations result from a combination of virus-specific factors, genetically encoded mechanisms, and the status of host defences and range from loss or upregulation of HLA-I molecules to selective increases of HLA-I alleles. In this review, I will first analyse characteristic features of altered HLA-I expression found in SARS-CoV-2. I will then discuss the potential factors underlying these defects, focussing on HLA-E and class-I-related (like) molecules and their receptors, the most documented HLA-I alterations. I will also draw attention to potential differences between cells transfected to express viral proteins and those presented as part of authentic infection. Consideration of these factors and others affecting HLA-I expression may provide us with improved possibilities for research into cellular immunity against viral variants.


Subject(s)
Antigenic Variation , COVID-19/immunology , Clonal Anergy , Histocompatibility Antigens Class I/immunology , Immune Evasion , SARS-CoV-2/genetics , Alleles , COVID-19/pathology , COVID-19/virology , Cytokines/genetics , Cytokines/immunology , Cytotoxicity, Immunologic , Gene Expression , Histocompatibility Antigens Class I/genetics , Humans , Immunity, Cellular , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology
9.
Hum Immunol ; 81(12): 697-701, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-838428

ABSTRACT

SARS-CoV2 might conduce to rapid respiratory complications challenging healthcare systems worldwide. Immunological mechanisms associated to SARS-CoV2 infection are complex and not yet clearly elucidated. Arguments are in favour of a well host-adapted virus. Here I draw a systemic immunological representation linking actual SARS-CoV2 infection literature that hopefully might guide healthcare decisions to treat COVID-19. I suggest HLA-G and HLA-E, non classical HLA class I molecules, in the core of COVID-19 complications. These molecules are powerful in immune tolerance and might inhibit/suppress immune cells functions during SARS-CoV2 infection promoting virus subversion. Dosing soluble forms of these molecules in COVID-19 patients' plasma might help the identification of critical cases. I recommend also developing new SARS-CoV2 therapies based on the use of HLA-G and HLA-E or their specific receptors antibodies in combination with FDA approved therapeutics to combat efficiently COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , HLA-G Antigens/immunology , Histocompatibility Antigens Class I/immunology , SARS-CoV-2/physiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , HLA-G Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Immune Tolerance , Immunization, Passive , Molecular Targeted Therapy , Signal Transduction/drug effects , Virus Internalization , Virus Replication , COVID-19 Drug Treatment
10.
Cells ; 9(9)2020 08 26.
Article in English | MEDLINE | ID: covidwho-730306

ABSTRACT

Natural killer cells are important in the control of viral infections. However, the role of NK cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has previously not been identified. Peripheral blood NK cells from SARS-CoV and SARS-CoV-2 naïve subjects were evaluated for their activation, degranulation, and interferon-gamma expression in the presence of SARS-CoV and SARS-CoV-2 spike proteins. K562 and lung epithelial cells were transfected with spike proteins and co-cultured with NK cells. The analysis was performed by flow cytometry and immune fluorescence. SARS-CoV and SARS-CoV-2 spike proteins did not alter NK cell activation in a K562 in vitro model. On the contrary, SARS-CoV-2 spike 1 protein (SP1) intracellular expression by lung epithelial cells resulted in NK cell-reduced degranulation. Further experiments revealed a concomitant induction of HLA-E expression on the surface of lung epithelial cells and the recognition of an SP1-derived HLA-E-binding peptide. Simultaneously, there was increased modulation of the inhibitory receptor NKG2A/CD94 on NK cells when SP1 was expressed in lung epithelial cells. We ruled out the GATA3 transcription factor as being responsible for HLA-E increased levels and HLA-E/NKG2A interaction as implicated in NK cell exhaustion. We show for the first time that NK cells are affected by SP1 expression in lung epithelial cells via HLA-E/NKG2A interaction. The resulting NK cells' exhaustion might contribute to immunopathogenesis in SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/immunology , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/immunology , Lymphocyte Activation/genetics , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/metabolism , Blood Donors , Bronchi/cytology , COVID-19 , Cell Degranulation/genetics , Coculture Techniques , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Epithelial Cells/metabolism , Humans , Interferon-gamma/metabolism , K562 Cells , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , RNA, Viral/genetics , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL